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ABSTRACT

The spatial incoherency of strong ground motions has the effect of reducing the response of
building foundations to the high frequency portion of these motions. Strong ground motion
recordings show earthquake response motions at building foundations to be less intense than

“corresponding free-field motions. To fully explain this difference as part of soil-structure
interaction (SSI) effects, it is necessary to consider spatial variations in free-field motions within
the building foundation footprint. This study reviews current coherency models developed from
work at the Lotung large-scale seismic test (LSST) facility and from seismic studies for the
major toll bridges in California. The models are modified for application to SSI analyses for
nuclear power plants, and the data sets used to derive them are briefly described.
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INTRODUCTION

An overview of spatial coherency studies is given by Zerva, A. and V. Zervas (2002). Most of
the studies of spatial coherency are based on evaluation of the ground motions from the dense
array located in Lotung Taiwan due to the extensive database that is available from the SMART
1 array. The SMART-1 array has station spacing of 100-4000m (Abrahamson et. al. 1987).
Using data from the SMART-1 array, coherency models have been developed by several authors:
Abrahamson, (1993), Harichandran and Vanmarcke (1986), Harichandran (1988), Harichandran
(1991), Loh (1985), Loh and Yeh (1988), Loh and Lin (1990), Novak (1987), Oliveira et. al.
(1991), Ramadan and Novak (1993), Vernon et al. (1991), and Zerva and Zhang (1997). Given
the dimensions of the SMART-1 array, these studies have been focused on coherency for station
separations that are greater than foundation sizes for nuclear power plants.

To address the spatial variation over dimensions of foundations for nuclear power plants, EPRI
supported the installation of the EPRI LSST array, also located in Lotung, Taiwan. The EPRI
LSST array is described in Abrahamson et. al. (1991) and has station spacings of 3 - 85 m. The
spatial coherency from the denser EPRI LSST array data was studied by Abrahamson and
Schneider (1988) and Abrahamson et. al. (1991).

With the SMART-1 and LSST array data, we have well calibrated empirical models for the
coherency in Lotung, Taiwan. A key question is: are the coherency models from Lotung,
Taiwan applicable to other regions? This question was addressed by Abrahamson et. al. (1992).
They compared the coherency models developed using the LSST array data with coherency
measured from dense arrays in other regions. They found that, other than for sites with strong
topography, there is not a significant dependence of the coherency on the site condition or
earthquake magnitude. -

A coherency model using both the SMART-1 and LSST data, as well as data from ten other
dense arrays, was developed by Abrahamson (1998). This model covers station separations
distances of 6-4000m. It was.developed as part of the seismic studies for the major toll bridges
in California and is only described in an appendix to a report to -Caltrans. This Caltrans appendix
gives the equation for the coherency model but does not include a description of how the model
was derived. ' '

The objective of this study was to review the current coherency models and make any
modifications needed for application to SSI analyses for nuclear power plants. In addition, a
brief description of the data sets used to derive the coherency model is included.
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2

MATHEMATICAL BACKGROUND

The spatial variability of the ground motion waveforms can be quantified by the spatial
coherency. Let uj(w) be the Fourier transform of the tapered time series u;(t), then

T
u ()= Zv(zk)uj(tk)exp(—ia)tk) (Equation 2-1)

k=1

where v(ty) is the data taper, T is the number of time samples, tx is the time of the kth sample,
and o is the frequency. The smoothed cross-spectrum is given by

S (@)= D a,u(@,)i(®,) (Equation 2-2)

where 2M+1 is the number of discrete frequencies smoothed, ®,=w+27m/T, am are the weights

used in the frequency smoothing, and the overbar indicates the complex conjugate. The
coherency, yi;(®), is given by '

(e = SO
1 - .

! Sii(@)Sj;(@) | | (Equation 2-3)
where S;j() is the smoothed cross-spectrum for stations i and j. As shown in Eq. 2-3, the

coherency is a complex number. It is common to use the absolute value of the coherency
(sometimes called the lagged coherency because it lags the data to remove the wave-passage

effect). A Tanh-1 transformation is applied to the lagged coherency to produce approximately
normally distributed data (Enochson and Goodman, 1965). That is, the Tanh™' (lyl) will be

approximately normally distributed about the median Tanh''(ly I) curve. This is a well-known
transformation used in time series analysis.

The computed lagged coherency depends strongly on the selected frequency smoothing. If no
smoothing is used, then the lagged coherency is always unity. In this evaluation of coherency, an
11-point Hamming window is used for the frequency smoothing (am) and a 5% double cosine
bell taper is used for the data window (v(t)). (This means that the complex cross spectrum in Eq.
2-2 is averaged over 11 frequencies using weights that are close to a triangle weighting scheme).
In order to make consistent comparisons of lagged coherency for different earthquakes, it is
important to keep the number of discrete frequencies smoothed fixed. This can lead to different
frequency bands for the frequency smoothing if the window lengths are not the same for all
events.
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Mathematical Background

There are several ways the coherency can be described: lagged coherency, plane-wave
coherency, and unlagged coherency. These three measures of coherency are described below.

The lagged coherency is the most commonly cited coherency measure. It is the coherency
measured after aligning the time series using the time lag that leads to the largest modulus of the
cross spectrum. It is given by lyl. There is no requirement that the time lags are consistent
between frequencies. In general, the lagged coherency does not go to zero at large separations
and high frequencies. The level depends on the number of frequencies smoothed.

The plane-wave coherency differs from the lagged coherency in that it uses a single time lag for
all frequencies. That is, it measures the coherency relative to a single wave speed for each
earthquake. As a result, the plane-wave coherency is smaller than the unlagged coherency. The
plane-wave coherency is found by taking the real part of the smoothed cross-spectrum after
aligning the ground motions on the best plane-wave speed. The plane-wave coherency will
approach zero at high frequencies and large separations.

Finally, the unlagged coherency measures the coherency assuming no time lag between
locations. It is the real part of the smoothed cross-spectrum. The unlagged coherency will be
smaller than the plane-wave coherency. The unlagged coherency is found by multiplying the
plane-wave coherency by cos(2nfE,s) where f is the frequency, &, is the separation distance in
the direction of wave propagation, and s is the wave slowness (inverse of the apparent velocity).
The coherent part of the wave passage effect can lead to negative values of the unlagged
coherency.
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COHERENCY MODELS

To evaluate the effects of spatial coherency for large foundations requires a coherency function
defined for short station separations (e.g. 0-200 m). Abrahamson et. al. (1991) developed
coherency functions based on the EPRI LSST array data, which is a dense array located on a soil
site in Taiwan. The LSST array included data recorded from magnitudes between 3.0 and 7.8.
They found that there was no dependence of the coherency on the earthquake magnitude.

Since the LSST array was located on soil, there was a question regarding the applicability of this
model to rock sites. Abrahamson and Schneider (1992) compared the lagged coherency model
from the LSST array with coherencies computed from nine other arrays located on rock and soil
site conditions. The dense arrays considered in this comparison are listed in Table 3-1. The
earthquakes from the dense arrays are summarized in Table 3-2. The lengths of the time
windows used to estimate the coherency are listed in Table 3-3. These time windows range from
2.0 to 10 seconds with most of the window lengths of about 5 seconds. These window lengths
were chosen to capture the strongest shaking on the horizontal component (e.g., S-wave
window). The coherency is measured over the specified window lengths.

Abrahamson et. al. (1992) compared the coherencies from the arrays listed in Table 3-1 with the
Abrahamson et. al. (1991) LSST based coherency model and fund that, overall, there is no
systematic difference between the lagged coherencies on rock and soil sites, but rock site arrays
with strong topographic differences showed lower coherencies than the LSST model.

In developing the Abrahamson (1998) coherency model, the data from the USGS Parkfield and
UCSC ZAY A arrays were not included because the low coherencies observed at these arrays
could be due to topographic effects. Using the data from the ten remaining arrays (two large
arrays and eight dense arrays), new coherency models were developed. As in the LSST study,
the coherency was fit to'the Tanh'(Iyl); however, the final model for the plane-wave coherency
was presented in terms of the coherency. This was done because it allowed the final model to be
constrained to yield unit coherency at zero separation distance and zero frequency.
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Coherency Models

Table 3-1
Arrays Used to Develop the Coherency Models
Array Location Site Class Topography Number of Station
» Stations Separation (m)

EPRILSST Taiwan Soil ~ Flat 15 3-85
EPRI Parkfield CA ~ Soft Rock Flat 13 10-191
Chiba ' Japan Soil Flat 15 5-319
USGS Parkfield CA Soft Rock Ridge Tops 14 25 —-952
Imperial Valley CA Soil Flat 5 18 -213
Differential -
Hollister CA Soil Flat 4 61 -256
Differential :
Stanford (Temp) CA Soil Flat 4 , 32-185
Coalinga (Temp) CA Soft-Rock Flat 7 48 - 313
UCSC ZIYA CA Soft-Rock Mountains 6 25 -300
(Temp)
Pinyon Flat (Temp) ~CA Hard-Rock Flat 58 7-340
SMART-1 Taiwan Soil Flat - 39 100 — 4,000
SMART-2 Taiwan Soil Flat 8 200 - 750
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Coherency Models

Table 3-2 .
Earthquakes in the Array Data Sets
Array No. of Magnitudes _ Rupture . Maximum
‘ Earthquakes Distances (km) PGA (g)

EPRILSST 15 3.0-7.8 5-113 0.26
EPRI Parkfield 2 3.0-3.9 13-15 0.04
Chiba 9 4.8-6.7 ' 61-105 0.41
USGS Parkfield | 9 22-35 18-45 0.04
Imperial Valley Differential 2 5.1-6.5 o 0.89
Hollister Differential 1 5.3 17 0.20
Stanford (Temp) 4 3.0-40 " 40 v 0.007
Coalinga (Temp) 1 : 5.2 - 12 0.21
UCSC ZIYA (Temp) 3 2.3-3.0 9-19
Pinyon Flat (Temp) 6 2.0-36 14-39
SMART-1 20 40-78 5-80 0.33
SMART-2 2 4.0-55 15-60 0.06
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Coherency Models

Table 3-3
Window Lengths (in sec) Used in the Coherency Estimates from Dense Arrays
Array Name Earthquake Number
1 (2 [3 [4 |5 J6 [7 |8 Jo [10][11]12]14
Chiba 50[s50[s50[s0[45]50]45[50]50 |
EPRI LSST 35[50[50]25]50[50]s0 25125][50]25
EPRI Parkfield | >°|*°
Hollister >0
50| 5.0

Imperial Valley

251252525} 25]25

Pinyon Flat
; 20120120 (20(20]20] 20
Coalinga
USGS Parkfield | *° S0 15015050 | 40|50 5050
UCSCZAYA | |20 |3°

40 | 50 | 5.0 ] 45
Stanford




Coherency Models

The Abrahamson (1998) model was modified to require coherency=1 for separation distances of
0 by adding the Tanh(a,&) term. The data do not provide a constraint for separation distances
less than 6 m; the 3 m separations from the LSST data are excluded because they are affected by
SSI. As aresult, the a, value was simply selected to give a smooth transition to unity at zero
distance. Tests using alternative values.of a, showed that the SSI is not sensitive to the choice of
a,. The equations for the modified model are given below:

)= L TembeD * NERCITE) ¢
}/pw ’ ) a]fc(g) azfc(f)

Yon (F-8) =V (f E)|cOSQ2fE R 5)

(Equation 3-1)

(Equation 3-2)'

¥ (18 =7, (F-E|(cosQafE,s) + isinRaf,s)) (Equation 3-3)

where f is the frequency in Hz,  is the separation distance in m, s is the slowness in s/m and & is
the separation distance in the radial direction in m, The coefficients for the model are given in
Tables 3-4 and 3-5 for the horizontal and vertical components. Eq. 3-1 gives the plane-wave
coherency, which should be used if a single inclined wave is used as the input to the SSI model.
Eq. 3-2 gives the unlagged coherency, which should be used if a vertically inclined wave is used
in the SSI. The complex coherency in Eq. 3-3 can be used with vertically inclined waves to
capture the systematic phase shifts due to an inclined wave. The &, term in Egs. 3-2 and 3-3
depend on the direction of the wave propagation. For a generic application, the median value of
&, will be

F= |
" A2 | - (Equation 3-4)

The imaginary term will depend on the direction of the wave-propagation (e.g., positive or
negative slowness). Its median value will be zero for a random wave direction, but for each
earthquake, it will be non-zero.



Coherency Models

Table 3-4 _
Plane-Wave Coherency Model Coefficients for the Horizontal Component
Coeff Horizontal Component
a 1647
a, 1.01
a, 0.4
n, 7.02
n,(&) 5.1 -0.51in(E+10)
€ | f£.(&)=-1.886+2.2211 M + 1.5}
E+1
s » 0.0005 s/m to 0.00025 s/m

Table 3-5
Plane-Wave Coherency Model Coefficients for the Vertical Component
Coeff Vertical Component
a, 3.15
a, = 1.0
a, 0.4
n, ' 4.95
n,(&) , 1.685
=exp(2.43—-0.0251n(£ +1) - 0. +DT
ey | F(O=0xp(:43-0.025In(¢ +1)-0.048[In(s + D]
S 0.0005 s/m to 0.00025 s/m
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Comparison of the Horizontal and Vertical Component Plane-Wave Coherency Models



Coherency Models
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Coherency Models

The plane-wave coherency model is shown in Figure 3-1 for the horizontal and vertical
components. Using a slowness of 0.25s/km (e.g. 4 km/s apparent velocity), the unlagged

coherency for the modified model is compared to the plane-wave coherency in Figure 3-2. This
shows the difference due to the wave-passage effect.

Evaluation of the Recommended Coherency Model

To evaluate the plane-wave coherency model given above requires that the relative timing-of the
recordings be available (including proper polarities). The two arrays with topographic effects
were excluded from this analysis (USGS Parkfield and UCSC ZAYA). Two of the remaining
arrays, Pinyon Flat and Stanford (temp) did not have reliable relative timing (this does not affect
the lagged coherencies comparisons given in Abrahamson et. al. (1992). The plane-wave
coherency residuals excluding the two arrays are shown in Figure 3-3. In this Figure, the mean
residuals were computed for each array for separation distance bins of 0-15m, 15-30m, 30-60m,

60-100m, and 100-150m. This figure shows that the model is unbiased for the data sets
considered. .
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Figure 3-3
Residuals of Plane-Wave Coherency from 56 Earthquakes



Coherency Models

The magnitude dependence of the plane-wave coherency residuals is shown in Figures 3-4 and
3-5 for frequencies of 5 Hz and 10 Hz, respectively. There is not a strong dependence for the
larger magnitudes. At 10 Hz (Figure 3-5), the smaller magnitudes show a trend toward a positive
residual indicating that they have slightly higher coherency than the larger magnitude
earthquakes.

The site-to-source distance dependence of the plane-wave coherency residuals is shown in
Figures 3-6 and 3-7 for frequencies of 5 Hz and 10 Hz, respectively. There is not a dependence
on distance.

This comparison indicates that the proposed coherency model is generally applicable for SSI
applications regardless of the site condition, earthquake magnitude, or distance as long as there
are not 81gn1flcant topographic features at the 31te For sites with strong topography, the
coherency is expected to be lower. _
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Coherency Models
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Coherency Models
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CONCLUSIONS

Based on the comparisons with dense array data from a range of site conditions, earthquake
magnitudes, and distances, the S-wave coherency models given in Tables 3-4 and 3-5 are
considered to be generic and applicable to all site conditions except those with severe
topography, and to all earthquake magnitudes and distances. While the models were only derived
for frequencies up to 20 Hz, the extrapolation to higher frequency is considered to be reasonable
because average coherency must continue to decrease as the frequency is increased until zero
coherency is reached.

The coherency models were derived for the S-waves ‘with window lengths of 2-10 seconds.
For very high frequencies (e.g. > 10 Hz), it is possible that over very short time windows (e.g.
0.5 sec), the coherency at very high frequencies could be larger than the coherency for the full
S-wave windows used here.
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